

Faculty of Chemistry Instrumental Analytical Chemistry UNIVERSITÄT DUISEBURG

Sorption of non-ionic organic compounds onto carbon-based nanomaterials

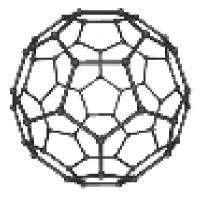
Presentation at the Norman Workshop: "Engineered Nanoparticles in the Environment"

Koblenz, Germany

Thorsten Hüffer

UNIVERSITÄT DUISEBURG

Introduction


- What are CNM?
- Properties
- Environmental relevance?
- Review
- Concept
- Expected Outcome

Introduction What are CNM?

UNIVERSITÄT DUISBURG

Carbon-based NanoMaterials (CNM)

Fullerene C₆₀

Single-walled carbon nanotubes (SWCNT) Multi-walled carbon nanotubes (MWCNT)

- Due to an increasing application, an input of CNM into the environment becomes more likely
 - Focus on the potential environmental relevance of CNM (UBA, 2009)

"the interaction with chemicals depending on shape, size,

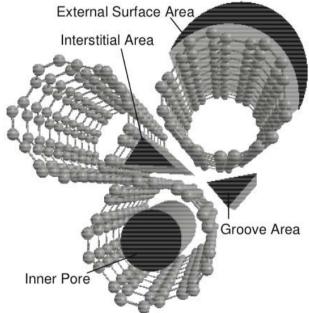
charge, and/or surface configuration"

- Problem:
 - Interaction of CNM with organic contaminants in the environment?
 - Impact of CNM on the fate and transport of organic contaminants in the environment?

Systematic approach on the sorption onto CNM is missing! 4

UNIVERSITÄT DUSSEBURG

- Introduction
- Review
 - Sorption mechanism
 - Sorbent Influence
 - Sorbate Influence
- Own Concept
- Expected Outcome

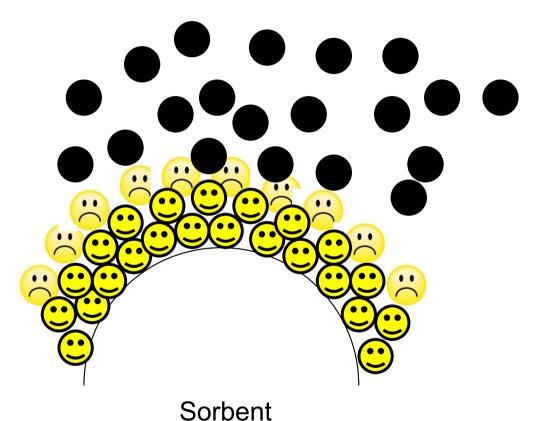


UNIVERSITÄT DEUSSENURG

Heterogeneity

(Various models used to describe sorption (Freundlich, Langmuir, Polanyi-Manes...)

- High energy surface sites, such as
 - Defects on CNM surface
 - Functional groups
 - Space of bundles



UNIVERSITÄT

Condensation

Sorbate

First sorbate layers: Interaction with surface Following layers: Interaction with each other => Distribution of sorption energy

Even distribution of hydrophobic surface sites

- => Prediction of sorption only based on one mechanism or parameter (e.g., hydrophobicity: K_{OW} or K_{HW})? Insufficient!
- Other possible mechanisms:
- -Electron donor-acceptor (EDA)
- -*Hydrogen bonds* (functional groups)
- -*Electrostatic interactions* (Charged sorbent surfaces, organic ions)

Relative contribution of each mechanism to the overall sorption is fundamental to predict sorption on CNM

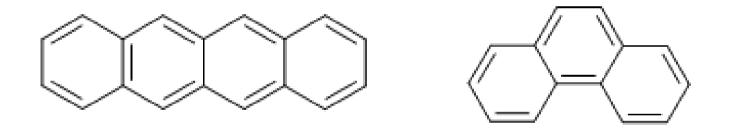
Sorbent Influence

UNIVERSITÄT

- Physical Properties
 - oSurface area
 - oPore volume/diameter
- Morphology
 - MWCNT layers
 Interstitial and groove areas
 - oInner pores
 - oSurface area
- Functionalization
 - Decreased hydrophobicity
 - Decreased accessibility

- No direct correlation to sorption
- **Dimensional restrictions?**

Available for sorption?

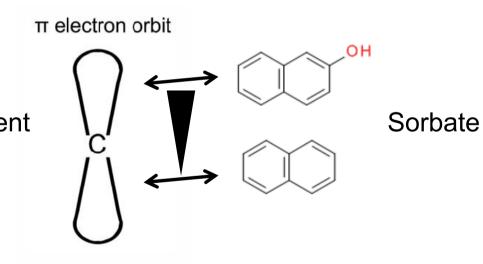

Not available Not available Available

Available

Availability of sorption sites on sorbent depends on:

- •Molecular Morphology
 - o Size: large vs. small
 - o Shape: linear/planar vs. bulky

Contact with sorbent surface to allow strong sorption



UNIVERSITÄT DUISEBURG

Strength of sorption depends on:

Functional Groups

- EDA
 - **Π-Π** Sorbent

UNIVERSITÄT DUISBURG

Various mechanisms control sorption

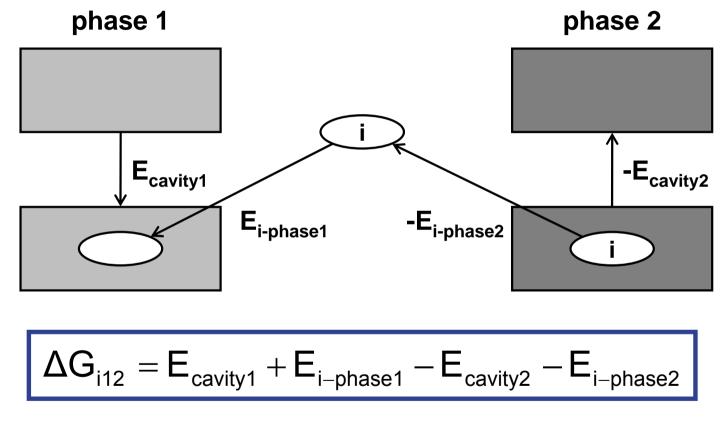
- EDA
- Hydrophobicity

Mechanisms may be affected differently by controlling parameters

- Sorbate characteristics
- Sorbent characteristics
- Water chemistry

Organic chemical sorption cannot sufficiently be described by a single mechanism (coefficient)!

UNIVERSITÄT DUUSSEBURG


- Introduction
- Review
- Concept
- Expected Outcome

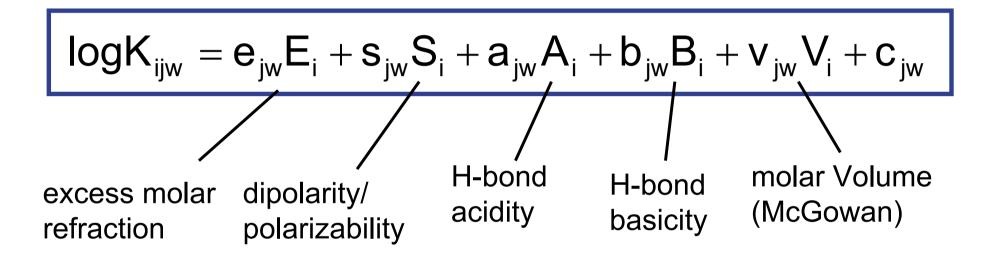
Linear free-energy relationships (LFER)

UNIVERSITÄT DUISBURG

For the partitioning between two bulk phases:

Relevant interactions of non-ionic organic compounds: van der Waals & specific polar interactions (EDA)

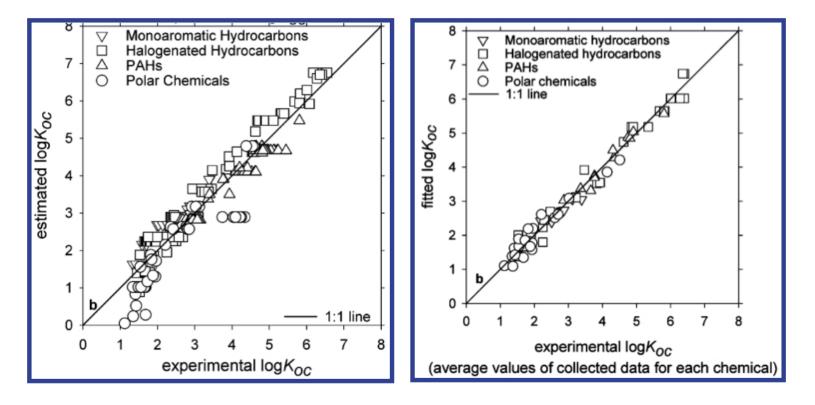
$$\mathbf{E} = \mathbf{E}^{\mathsf{vdW}} + \mathbf{E}^{\mathsf{EDA}}$$


Goss & Schwarzenbach 2001

Linear free-energy relationships (LFER)

UNIVERSITÄT

Poly parameter linear free-energy relationship (ppLFER)


Solute descriptors: E, S, A, B, V

Phase descriptors: e, s, a, b, v

UNIVERSITÄT DUISEBURG

Partitioning of Organic Compounds between Water and NOM in soil/sediment

spLFER with Kow

 $\log K_{iiw} = a \log K_{iow} + c$

ppLFER

Nguyen et al. 2005

Methodology Molecular probes

UNIVERSITÄT

Probe Compound Approach

• Various classes to cover all relevant molecular interactions (e.g., H-bond acidity etc.)

UNIVERSITÄT DUISEBURG

- Introduction
- Review
- Concept
- Expected Outcome

The systematic investigation of sorption of non-

ionic compounds on CNM

- Determination of phase descriptors of various CNM
- Relative contribution of different molecular
- interactions to the overall sorption

Impact of CNM of transport of organic chemicals in the environment

Acknowledgement

UNIVERSITÄT DUISBURG ESSEN

Instrumental Analytical Chemistry University Duisburg-Essen: Prof. Dr. Torsten C. Schmidt

Organizing and Scientific Committee

Faculty of Chemistry Instrumental Analytical Chemistry UNIVERSITÄT

Thank you very much for your attention!

Presentation at the Norman Workshop: "Engineered Nanoparticles in the Environment"

Koblenz, Germany

Thorsten Hüffer