

In vivo information... ...with *in vitro* tools

1st Prize "Creation", Ile de France 2004 National Competition in Support of the Creation of Innovative Technology Businesses

In Vivo risk assessment

Case study: endocrine chemicals

Monitoring water, detecting pollutants

- Currently implementing effluent management at industrial plants.
 heavy metals and endocrine disruptive chemicals detection
- Looking ahead, WatchFrog will provide water monitoring solutions involving minimal handling on the part of users, based on models tailored to their needs.

Genetic detection in vivo

Fluorescent protein red, green, etc.

Germinal transgenesis

Biological system: expression of a finely modulated fluorescent protein by the presence of the molecule to be detected or screened

Advantages of the amphibian model

- thousands of transparent larvae
 easily placed in contact with the
- sample
- polydetection

- rapid tests and dose-response
- •small size of larvae
- Iow cost
- tailor-made tests

The only small organism model sufficiently close to us to predict the effect on human health

WatchFrog's amphibians: model of vertebrate development

The rapid amphibian development allows to anticipate physiopathological phenomenon that intervenes at long term in human

Similar specific responses between amphibian vertebrate and human

WatchFrog tailor-made tests: *in vivo* is as simple as *in vitro*

- <u>Absorption/Distribution/</u> <u>Metabolism/Excretion/Tox (ADMET)</u>
- Specific/global responses
- Scalable

- Sensitivity/Specificity
- Reproducible
- Cost effective
- Potential automatization
- Medium rate screening

Results:

Light!

Can be automatized!

In vivo information... ...with in vitro tools.

In Vivo risk assessment

Case study: endocrine chemicals

Monitoring water quality

On line monitoring

G

Also with japanese medaka!

Sensitivity and specificity: benchmark to eliminate the risk of false positive

WatchFrog technology

Case study: endocrine chemicals

The problem : detecting endocrine disrupting chemicals in the water/food and the environment.

- Need for screening that is rapid, sensitive, physiological ... in vivo
- Why: Because chemistry and *in vitro* methods cannot predict/detect how substances will be distributed, modified and accumulated in organisms
- EU and OECD have (re)examined testing and Assessment of Endocrine Disruptors and underlined the importance of rapid and reproducible tests including germinal transgenic approaches.
- Reduce, Replace, Refine
- Validation of the Amphibian Metamorphosis Assay

Leloup and Buscaglia, 1977

OCDE Test - Overview

- Exposure of X. laevis tadpoles (stage 51) to 0, 65, 125, 250 and 500 µg perchlorate/L for total 21 days
- Sub-sampling of 5 tadpoles after 7 days; comparison of different endpoints

- Flow-through system (22°C, pH 6.5 8.0, photoperiod 12h:12h)
- 6 replicates per test group (4 rep. required) statistical power

Endpoints – Apical Endpoints

- Weight
- Whole Body Length
- Snout-Vent Length
- Developmental Stage (Nieuwkoop and Faber 1967)
- Hind Limb Length

Endpoints – Thyroid Glands

• Thyroid Gland Diameter

2.0 mm

• Thyroid Gland Histology

WatchFrog model lights up to reveal at early stage the physiopathological / therapeutical process

In 48 hours synergistic effect on thyroid signaling - predicting morphological effect occurring 6 weeks later

WatchFrog model to detect anti-thyroid effect : medical drug methymazol

Chemical Formula: (METHYL-1 IMIDAZOLE)THIOL-2

Blocking thyroid hormones synthesis Potential inhibitor of thyroid peroxydases

 CH_{21} ̈́SΗ E Eon Labs

Estrogens : different lines for various applications

3ERE-GFP

Vtg-GFP

Arom-GFP

Quantification of estrogenic response

Significant induction significative from 10⁻¹⁰M EE2

WatchFrog's amphibians (& fish):

Existing models :
neuronal labeling
thyroid functions
estrogenic functions
heavy metals
FETAX

In progress:
> chronic toxicity
> genotoxicity
> immune system
> ardio-vascular

Perspectives:> automatized monitoring on industrial site

WATCHFROG

WatchFrog enables the potential of mixtures to be tested rapidly and *in vivo* creating dedicated models.

Evolutive technology of WatchFrog enhance the ability to take advantage of, cost effective, predictability for environmental health.

Our partnership with Veolia – Anjou Recherche is helping us to industrialize our tools.

Gregory LEMKINE lemkine@watchfrog.fr +33 (0)6 1639 8191

