

Adsorption based sampling

Branislav Vrana^{1,2}, Angel Belles³, Hélène Budzinski³

¹Water Research Institute, Bratislava ²RECETOX, Masaryk university, Brno ³LPTC, Université Bordeaux 1, Bordeaux

Chemical Monitoring On Site (CM Onsite) organised by NORMAN Association and JRC in support of CIS WFD; 29.-30.10.2012, Ispra, Italy Why adsorption passive sampling sampling?

- >passive sampling of polar compounds
- Soluble in water, can be present at higher concentrations than hydrophobic compounds
- higher solubility implies more possibility for fluctuations of water concentration
 integrative sampling needed

Variation in pollution over time

Need for methods with very low limits of quantification

- Analytical Methods for the new proposed Priority Substances of the European Water Framework Directive (WFD)
- methods limits of quantification (LOQs) are compared with one third (1/3) of the EQS, mandatory for WFD compliance monitoring
- Example EQS:

– Cypermethrin	80 pg/l (8 pg/l for coastal salt waters)
– Dichlorvos	60 pg/l in coastal waters
– Dicofol	32 pg/l in coastal waters
 17-alpha-ethinylestradiol 	35 pg/l (7 pg/l in coastal waters)
 17-beta-estradiol 	80 pg/l in coastal waters
 Heptachlor/epoxide 	0.2 pg/l (10 fg/l in coastal waters)
– BDEs	49 fg/l (2.4 fg/l in coastal waters)

polar substances

Why adsorption passive sampling sampling?

- partition/absorption polymers have low uptake capacity for polar compounds
- adsorption materials with strong bonding and high bonding capacity of polar compounds used in construction

Transport barriers in a samplers for polar compounds

Adsorption based samplers

POCIS Adsorbent + PES membrane

Chemcatcher Empore disk +/- PES membrane

2nd generation

design

1st generation

design

Principle of a passive sampler: uptake process from water

Diffusional path δ

Uptake of a chemical by a passive sampler

 R_{s} = substance specific sampling rate [L d⁻¹]

Measurement of TWA concentration

$$M_{\rm s} = C_{\rm w} K_{\rm D} V_{\rm s} \left[1 - \exp\left(-\frac{R_{\rm s} t}{K_{\rm D} V_{\rm s}}\right) \right]$$

Sampling rate R_S [L d⁻¹] - equivalent volume of water cleared of the target analyte per unit of time

Sampler/water equilibrium distribution \sim coefficient K_D [L/L]

Differences in sampling principles

ABSORPTION SAMPLERS

ADSORPTION SAMPLERS

Differences in sampling principles

Sorption models

Solute(aq) + Sorbent ------ Solute(s)

Langmuir isotherm:

$$T_S = \frac{K_L C_{\max} C_w}{1 + K_L C_w}$$

 $K_D = \frac{C_S}{C_w}$

Concentrarion in water Cw

Langmuir sorption isotherms

Figure S2: Isotherms for the OASIS HLB experiments

Sorption Behavior of Charged and Neutral Polar Organic Compounds on Solid Phase Extraction Materials: Which Functional Group Governs Sorption?

Patrick S. Bäuerlein, *,† Jodie E. Mansell, † Thomas L. ter Laak, † and Pim de Voogt †,‡

Environ. Sci. Technol. 2012, 46, 954-961

0ч Z ş 0

Solute – sorbent interactions:

- van der Waals
- Coulomb
- $\pi \pi$ interaction
- hydrogen bonding

Multiple binding sites: combination of isotherms

Figure 1. Single and double Langmuir fit for carbamazepine on HLB.

Sorption Behavior of Charged and Neutral Polar Organic Compounds on Solid Phase Extraction Materials: Which Functional Group Governs Sorption?

pubs.acs.org/est

Patrick S. Bäuerlein, *'^ Jodie E. Mansell, † Thomas L. ter Laak, † and Pim de Voogt $^{\dagger, \ddagger}$

Comparison of samplers Chemcatcher POCIS

Sorbent	SDB-XC	OASIS - HLB		
Membrane	PES	PES		
Surface area	17.5 cm ² (one sided)	46 cm ² (two sides)		
Geometry	flat disk	flat disk		

- samplers differed in surface area, type and mass of adsorbent material applied
- the same type of membrane and similar sampler geometry similar mass transfer was expected

Tapie et. al., unpublished

Comparison of samplers: triazine pesticides

Ms(t) = Cw Rs t

	Rs Chemcatcher L.d ⁻¹	Rs POCIS L.d ⁻¹
Simazine	0.12	0.31
Atrazine	0.15	0.33
Cyromazine	-	0.00
Propazine	0.16	0.36
Terbuthylazine	0.19	0.37
Promethryn	0.16	0.36
Terbuthryn	0.13	0.34
Cyanazine	0.09	0.15
Irgarol	0.12	0.36

Tapie et. al., unpublished

Comparison of samplers

- for most compounds uptake capacity was high and confirmed by integrative uptake over the 2 weeks of exposure
- thus mass of analyte found on sampler depended solely on the sampling rate and not on the sampler uptake capacity
- similar mass transfer coefficient [L/d/cm²] in two different samplers was observed
- Selection adsorbent material matters only close to equilibrium

Diffusion through the membrane

Effect of flow velocity on uptake

Prmaņ_{*}

Li, H., Vermeirssen, E. L., Helm, P. A., & Metcalfe, C. D. (2010). Controlled field evaluation of water flow rate effects on sampling polar organic compounds using polar organic chemical integrative samplers. ET&C 29, 2461-2469

Effect of pH and salinity on POCIS performance Sampler calibration in a flow-through system:

Effect of pH on analyte uptake

Example: Dissociating acidic compounds

Sampling rates

Belles et al., in preparation

Does the PRC approach work?

- strong bonding means that the sampler effectively releases no substances to the water phase
- sorption may be non-linear
- > significant dissipation observed only for highly polar compounds (log K_{ow} <1)
- PRC approach works for certain compounds and exposure scenarios, these may not necessarily be applied to all compounds and all exposures.
- in practice, sampling rates are used that were measured in the laboratory

Determination of the uptake and release rates of multifamilies of endocrine disruptor compounds on the polar C18 Chemcatcher. Three potential performance reference compounds to monitor polar pollutants in surface water by integrative sampling

Camilleri, J.; Morin, N.; Miege, C.; Coquery, M.; Cren-Olive, C.

Journal of Chromatography A, Volume 1237, issue (May 11, 2012), p. 37-45. ISSN: 0021-9673 DOI: 10.1016/j.chroma.2012.03.025 Elsevier Science

Evaluation of the Use of Performance Reference Compounds in an Oasis-HLB Adsorbent Based Passive Sampler for Improving Water Concentration Estimates of Polar Herbicides in Freshwater

Mazzella, Nicolas; Lissalde, Sophie; Moreira, Sylvia; Delmas, François; Mazellier, Patrick; Huckins, James N.

Environmental Science & Technology, Volume 44, issue 5 (March 1, 2010), p. 1713-1719. ISSN: 0013-9365 Vol: 10.1021/es902256m American Chemical Society

NORMAN POSITION PAPER

NORMAN Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

Passive sampling of emerging pollutants in the aquatic environment: state of the art and perspectives Position Paper

Branislav Vrana^{& d*}, Etiënne L. M. Vermeirssen^b Ian J. Allan^e, Jiří Kohoutek^d, Karen Kennedy[®] Graham A. Mills⁴ and Richard Greenwood⁰

*Slovak National Water Reference Laboratory, Water Research Institute, Nabr. arm. gen. L. Svobodu 5, 81249 Bratislava, Slovakia

¹Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstr. 133, 8600 Dübendorf, Switzerland "Norwegian Institute for Vater Research, Gaustadalléen 21, NO-0349, Oslo, Norway

^aResearch Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 126/3, 625 00 Brno, Czech Republic

The University of Queensland, The National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane QLD, 4108, Australia

School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, PO1 2DT, UK

⁸School of Biological Sciences, University of Portsmouth, King Henry I Street, Portsmouth, PO1 2DY, UK

'Contact person:

Branislav Vrana

T +421 2 59343466

F +004212 54418047

e-mail branovrana@googlemail.com

This document has been written as a follow-up to the expert group meeting organised by the NORMAN association on $27^{\rm fb}$ May 2009 in Prague. It reflects the position of the NORMAN association experts and invited speakers on the topic of passive sampling and its application in the monitoring of emerging pollutants in aquatic environment.

Table 1. List of most discussed emerging pollutants in the aquatic environment and the established or expected/potential performance of passive samplers of these compounds.

Category / class	Sub-class	Individual substances	Potential of non- polar samplersª	Potential of polar samplers ^ь	Stage of develop- ment ^c	Sampler calibration data ^d
Natural products	Cyanotoxins	Microcystins	-	+	d	[125]
<i>(</i>)		2,6-Di-tert-butylphenol	-	+		
anti		4-tert-Butylphenol	-	+		
Antioxidants	BHA	-	+			
ntic		BHQ	-	+		
∢	A	BHT	-	+		
Antifouling compounds	Antifouling compounds	Irgarol	-	+	đ	[9,99]
8 bui Urganotin tut compounds		Dibutyltin ion	-	+	d	[38,39]
		Monobutyltin ion	-	+	d	[38,39]
	Organotin	Tetrabutyltin ion	-	+	d	[38,39]
	compounds	Diphenyltinion	-	+	d	[38,39]
	Triphenyltin ion	-	+	d	[38,39]	
Detergents	Ethoxylates/ carboxylates of octyl/nonyl phenols	4-Nonylphenol di- ethoxylate (NPE2O)	-	+	d	[25,126, ,127]
		4-Nonylphenol mono- ethoxylate (NPE1O)	-	+	d	[25,126 ,127]
		4-Nonylphenoxy acetic acid (NPE1C)				

Conclusions

- > A lot of calibration data is available in the literature
- Most of the work has concentrated on making measurements rather than trying to understand the mechanisms involved
- Little is known about the link between the sampling rate, uptake capacity and compound properties
- More research is needed into in-situ calibration and conversion to concentrations in the water phase
- Although environmental variables affect uptake into samplers, sampling rates are not dramatically affected by environmental variables (flow, salinity, pH) over the range of conditions typically found in the environment
- Time integrative sampling offers great advantage that balances the uncertainty of adsorption samplers – discontinuous spot samples can give even more uncertain result

Thank you for your attention!

Adsorption samplers

Polar Organic Chemical Integrative Sampler (POCIS)

Adsorbent + PES membrane

Chemcatcher

Empore disk +/- PES membrane

