

RMassBank: Automatic Recalibration and Processing of Tandem HR-MS Spectra for MassBank

Eawag: Swiss Federal Institute of Aquatic Science and Technology

$\bullet \bullet \bullet \bullet$

Presenting: Emma Schymanski

Coauthors: Michael Stravs, Heinz Singer and Juliane Hollender Eawag – Department of Environmental Chemistry Dübendorf (Zurich), Switzerland

RMassBank Questions: massbank@eawag.ch

Presentation Overview

Introduction and Problem Formulation

- Spectral clean-up (garbage in => garbage out!)
- Spectral annotation (compound-spectrum link)
- The RMassBank Workflow
 - \circ Data processing
 - Record creation
- Results of RMassBank Processing
 - Proof-of-concept on 70 pesticide spectra
 - Spectral Interpretation

Spectral Clean-up

Garbage in = garbage out!

The General Problem

- No time: many want to add spectra in principle, no-one has time to do it
- Manual data entry is tedious, repetitive, prone to errors
- Full manual quality control of spectra is tedious and resource-consuming
- The Result* Database becomes a "spectral dump"**
 - "We'll just use a noise cut-off, that'll be fine" e.g. WA001201
 - Cut-off at 5 ‰ (MassBank reporting can go down to 1 ‰)
 - "We'll just use the peak list from our software" e.g. CE000143
 - Many low intensity noise peaks, including peaks above [M+H]⁺
 - \circ "Annotation is tedious" e.g. JEL00007
 - Minimum amount of information provided only

Spectral Clean-up

MassBank Record: WA001201

MS\$DATA_PROCESSING:	<pre>FIND_PEAK ignore rel.int. < 5</pre>		
PK\$NUM_PEAK: 19			
PK\$PEAK: m/z int. r	el.int.		
102 63 63			
105 8 8			
130 133 133			
131 8 8			
139 20 20			
162 12 12			
163 12 12			
166 834 834			
167 59 59			
178 12 12			
180 63 63			
182 24 24			
184 999 999			
185 63 63			

* These examples are demonstrations only and no offense intended!

Spectral Clean-up

MassBank Record: CE000143

MS	\$FOCUSED_ION: PRECURSOR_M/Z 268.10404
MS	\$FOCUSED_ION: PRECURSOR_TYPE [M+H]+
אס	SNUM PEAK. 20
חם מס	SPEAK. m/z int rel int
	76 422012 1164 474600 2
	70.423012 1104.474009 2
L	79.144173 972.286438 2
L	88.860359 1310.202271 2
L	106.183556 1195.565674 2
	135.887161 3993.299072 7
	135.992874 3979.442627 7
	136.034454 2340.972656 4
	136.041092 1992.728271 4
	136.061371 568236.125 999
	136.08461 4257.030762 7
	136.130478 2980.912598 5
Г	136.228577 1192.598145 2
	136,234634 1166,915161 2
	197 613419 1193 385498 2
	203 604138 1180 134888 2
L	210 070097 21071 192504 20
	219.0/998/ 219/1.185594 59
r	237.09053 180033.921875 317
	292.21759 1154.94812 2
	293.092346 1334.223755 2
	293.587189 1281.828003 2

These examples are demonstrations only and no offense intended!

11

Spectral Clean-up – Example of Orbitrap Spectra

Garbage in = garbage out!

Measurement artefacts include

- \circ Systematic increase in ppm error with low *m/z* values
 - \circ 5 ppm accuracy => 15 ppm at *m/z* < 100
- Satellite or shoulder peaks result of FT instrument processing
- Consistent electronic or measurement noise peaks
- Noise peaks at a ~fixed level hiding real peaks of lower intensity
 - $_{\circ}~$ A strict noise cut-off will result in a loss of information

High mass accuracy standard spectra have advantages:

- Meringer et al. (2011) showed a missing subformula indicates instrument noise or interfering peaks
 - Use subformula assignment to perform spectral clean-up!

Spectral Annotation

Matching Spectrum and Compound Information

User needs to contribute a bare minimum of information

- Only the user knows what compound has been measured
 - At least one form of unambiguous compound identifier is required
 - o e.g. internal ID, name, SMILES and retention time
- Measurement parameters / methods / settings are relatively consistent
 - These can be added in batch form, not individually

Internet Services: Let search engines do the work for you!

- CACTUS Chemical Identifier Resolver¹
 - SMILES (c1ccccc1) to InChI Key (UHOVQNZJYSORNB-UHFFFAOYSA-N)
- Chemical Translation Service (CTS)² to do the rest
 - Names, CAS #, InChI and Identifiers (IDs, if available): PubChem CID, ChemSpider, ChEBI, HMDB, KEGG, LipidMaps

Stravs, Schymanski, Singer and Hollender, 2012,

Journal of Mass Spectrometry, accepted. DOI: 10.1002/jms.3131

RMassBank – Clean-up and Recalibration

RMassBank – Example Clean-up

RMassBank – Spectrum Annotation

Example MassBank Record

MassBank Record: EA015612

Home | Spectrum | Quick | Peak | Substructure | Browser | Browse | Index | MassBank ID:

Go

Asulam; LC-ESI-ITFT; MS2; 75%; R=15000; [M+H]+

ACCESSION: EA015612 RECORD_TITLE: Asulam; LC-ESI-ITFT; MS2; 75%; R=15000; [M+H]+ DATE: 2012.03.16 AUTHORS: Stravs M, Schymanski E, Singer H, Department of Environmental Chemistry, Eawag LICENSE: http://massbank.ufz.de/MassBank/files/license.html COPYRIGHT: Copyright (C) 2011 Eawag, Duebendorf, Switzerland COMMENT: CONFIDENCE standard compound COMMENT: EAWAG_UCHEM_ID 156

Experimental

- Individual Injection; routine chromatography; Orbitrap XL with ESI + / -
- Daily vendor-recommended calibration

Screened for $[M+H]^+$ precursor within RT ± 0.3 min MS/MS retrieved from MS with highest intensity

Processing: The Numbers

- \circ 68 of 70 pesticides with sufficient [M+H]⁺ for processing
- 55,594 peaks present following satellite removal

 - 14,699 WIT
 13,305 of t
 76 % of peaks are noise!
- \circ 454 peaks with Formation of N₂ and H₂O adducts is relevant in MS/MS! \circ 256 of thes
- Only 44 peaks remained for "manual inspection"
- No difference observed between spectra with different resolutions
- Additional modes (results not shown here)
 - M⁺, [M+Na]⁺, [M-H]⁻, M⁻, [M+FA]⁻,
- Effect of Recalibration
 - Shown in the next few slides...

eawag aquatic research 0000

RMassBank with 70 Eawag Pesticide Spectra

Recalibration Curve: Relative mass deviation over m/z

Recalibration: Relative Mass Deviation Distribution

000

eawag aquatic research 0000

RMassBank with 70 Eawag Pesticide Spectra

Frequency of Occurrence of Peaks by Intensity: Multiplicity Filtering

944 MS/MS spectra from [M+H]⁺ of 70 pesticides

- o www.massbank.jp
- o http://massbank.normandata.eu/MassBank

Total Number of "RMassBank Spectra"

- RMassBank records in Uchem-MassBank:
 - 5,312 records (374 compounds) LTQ Orbitrap XL
 - 153 records (12 compounds) Orbitrap Adducts
 - 1,262 records (151 compounds) Q Exactive Orbitrap
- RMassBank records in NORMAN MassBank:
 - 3,193 records (158 compounds) from UFZ Orbitrap XL
 - 3,102 records (226 compounds) from Eawag Orbitrap XL

For those online: pull up MassBank record EA015611

Conclusions: RMassBank

The RMassBank Workflow

- Reduces much manual work associated with bulk creation of many records
- Creates high quality MS/MS spectra
- Annotation with formula value-adds the spectra
- Works very well for the spectra it was developed on (Orbitrap)
- BUT: Every mass spectrometer is different:
 - Processing and measurement steps will probably need adjusting

Benefit for Contributors

- We have learnt a lot about our spectra and compounds (e.g. MS/MS adducts!)
- MassBank is being using within our department
- If you want to know more about what recalibration can do for your data:
 - 29-30th November: Emerging Pollutants Workshop, Non-target session
 - Stravs et al. 2012, *J. Mass Spectrom.*, DOI: 10.1002/jms.3131

Acknowledgements

- Marie-Curie Post Doctoral Fellowship (E. Schymanski),
- Eawag Discretionary Funds (M. Stravs)
- O Coauthors: *Michael Stravs*, Heinz Singer, Juliane Hollender
- O R & MassBank help: Steffen Neumann, Michael Gerlich, Carsten Kuhl, (IPB)
- O Discussions: Matthias Ruff, Martin Loos (Eawag); Tobias Schulze,

Martin Krauss, Werner Brack (UFZ)

• Programs: Markus Meringer (MOLGEN-MS/MS), Florian Rasche (Sirius),

Miguel Rojas-Cherto & Egon Willighagen (MEF)

- MassBank & Naming Rights: Prof. Takaaki Nishioka
- NORMAN Association

0-0-0

Any Questions?

Emma Schymanski, Michael Stravs, Heinz Singer, Juliane Hollender

massbank@eawag.ch (ES, MS) emma.schymanski@eawag.ch

DOI: 10.1002/jms.3131 All Details Contained Within!