

# "Old", "New" and "Novel" Flame Retardants in the Environment - Analytical Methods and Levels

#### Sicco Brandsma, Jacob de Boer, Pim Leonards

IVM Institute for Environmental Studies



- "Old" Brominated flame retardants
  - PBDEs, BDE209, TBBP-A and HBCD
- "New" Brominated flame retardants
  - BDBPE, DBDPE, TBB, TBPH and PBT
- "Alternative" Flame retardants
  - PFRs
- "Novel" Flame retardants
  - European research project ENFIRO

#### "New" brominated flame retardants



DBDPE (decabromodiphenylethane)



BTBPE (1,2 bis(2,4,6-tribromophenoxy)ethane)



TBPH



(bis-2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate)

(2-ethylhexyl-2,3,4,5-tertabromobenzoate)

IVM Institute for Environmental Studies

# Analytical methods for "New" BFRs

- Analytical methods described in literature for different matrices
- Dust  $\rightarrow$  Stapleton et al. (2008), Ali et al. (2011)
- Air  $\rightarrow$  Sjordin et al. (2001) Takigami et al. (2009)
- Sediment  $\rightarrow$  Hoh et al. (2005), Lopez et al. (2011)
- S. sludge  $\rightarrow$  Kierkegaard et al. (2004), Ricklund et al. (2008)
- Wastewater  $\rightarrow$  Klosterhause et al. (2008), Zhou et al. (2010)
- Biota  $\rightarrow$  Law et al. (2006), Luo et al. (2009)
- Blood  $\rightarrow$  Karlsson et al. (2007)

#### Extraction of "New" BFRs

- Different extraction methods
  - Soxhlet
  - ASE
  - Ultrasonic extraction
  - SPE
- Wide range of solvent mixtures
  - Petroleum ether
  - Toluene
  - Dichloromethane
  - Hexane
  - Acetone









# Cleanup methods for "new" BFRs

Cleanup methods for abiotic and biotic samples

- Sulphuric washing
- Deactivated or sulphuric acid impregnated silica column
- Florisil column
- SPE cartridges
- Alumina column
- Sulphur removal (activated copper, AgNO3 on silica, TBA reagents and GPC)

# Critical parameters for "new" BFRs

- Sulphuric acid treatment can only be used for DBDPE
- Non-destructive cleanup methods needed for BDBPE, TBB and TBPH
- TBA reagents may caused debromination of DBDPE
- DBDPE, TBB and TBPH undergo photodegradation
- Difficulties encountered in the analysis of DecaBDE are also expected for DBDPE
  - Poorly soluble in organic solvent
  - Higher boiling point than DecaBDE
  - Thermally degrades to mainly bromotoluenes
  - Blank problems

## Instrumental analysis for DBDPE, BDBPE

- LR-ECNI-MS monitoring m/z 79/81 for DBDPE and 79/81 and 250.8/252.8 for BDBPE
- HR-EI-MS m/z 969/971 for DBDPE m/z 685/687 for BDBPE
- LR-ECNI-MS more sensitive then HR-EI-MS less specific
- Labeled DBDPE could not be used as IS for LR-ECNI-MS
- 13C BDE 209 used as alternative for LR-ECNI-MS
- DBDPE degrades on the GC column use column <15 meter

#### GC-ECNI-MS chromatogram of DBDPE, BDBPE



#### Instrumental analysis of TBB and TBPH



TBB was quantified using ion fragment (m/z) 357 (Quant) and 471 (Qual)

TBPH was quantified using ion fragments (*m/z*) 463 (Quant) and 515 (Qual)

#### **GC-ECNI-MS** chromatogram

GC/ECNI-MS chromatograms revealing the relative retention times of the primary BDE congeners, TBB and TBPH on a 15 m DB5-MS column



IVM Institute for Environmental Studies Stapleton et al, (2008)Environ. Sci. Technol. **42, 6910–6916** 

# LC-MS/MS

- LC-APPI-MS/MS in negative mode developed by Abdallah et al. (2009) for analyzing 14 PBDEs in house dust
- LC-MS/MS (APPI/APCI) in negative mode was also used by Zhou et al. (2010) to measure the "new" BFRs in combination with the PBDEs HBCD and TBBP-A

#### Advantages

- no thermal degradation
  use of 13C labeled standards
- Measuring al compounds in one run no column changes

#### Disadvantages

Less sensitive then GC-ECNI-MS

|                     | GC/LR-ECNI-MS             | LC-MS/MS                   |  |
|---------------------|---------------------------|----------------------------|--|
| LOD                 | 30 fg - 1.7 pg*           | 12 - 30 pg*                |  |
| Sensitivity         | + +                       |                            |  |
| Selectivity         | No                        | yes                        |  |
| Labeled standards   | No (only for BDE209)      | yes                        |  |
| Thermal degradation | yes                       | no                         |  |
| Expensive           | + -                       | +                          |  |
| Expert training     | -                         | +                          |  |
| Libary search       | No                        | No                         |  |
|                     | *Eljarrat et al, (2002)   | *Abdallah et al, (2009)    |  |
|                     | J Mass Spectrom 37: 76-84 | Anal. Chem., 81, 7460–7467 |  |

## Levels in the environment (I)

| Matrix                          | DBDPE concentrations                                                                                                                                                                                                               | Range DBDPE                                  | BTBPE concentrations                                                                                                                                                                                                 | Range BTBPE                |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Air                             | 1916 pg/m <sup>3</sup> (Shi et al., 2009).<br>1–22 pg/m <sup>3</sup> (Venier and Hites, 2008)                                                                                                                                      | 1–1916 pg/m <sup>3</sup>                     | 0.1–10 pg/m <sup>3</sup> (Hoh and Hites, 2005)<br>30.7 pg/m <sup>3</sup> (Shi et al., 2009)                                                                                                                          | 0.1-30.7 pg/m <sup>3</sup> |
| Air (e-waste)                   | up to 120 pg/m <sup>3</sup> (Hoh et al., 2005)<br>0.6 ng/m <sup>3</sup> (Kierkegaard et al., 2004)<br>7 ng/m <sup>3</sup> (Karlsson et al., 2006a,b)                                                                               | 0.7-77 ng/m <sup>3</sup>                     | 0.5–1.2 pg/m <sup>3</sup> (Venier and Hites, 2008)<br><0.6–39 ng/m <sup>3</sup> (Pettersson-Julander et al., 2004)<br>5.6–67 ng/m <sup>3</sup> (Sjödin et al., 2001)<br>30 ng/m <sup>3</sup> (Kalsson et al., 2006b) | 5.6–67 ng/m <sup>3</sup>   |
| Dust                            | Average 47 µg/kg in Swedish house dust (Karlsson et al., 2007)<br>Average 270, 170, and 400 µg/kg in UK homes                                                                                                                      | <10 to 11070 µg/kg dw                        | Average 4.8 µg/kg in Swedish house dust<br>(Karlsson et al., 2007)<br>Average 120, 7, 2, and 7,7 µg/kg in LIK homes offices                                                                                          | 4.8–1060 µg/kg dw          |
|                                 | offices, and cars respectively (Harrad et al., 2008)<br><10 to 11070 µg/kg dw, median 201 µg/kg dw<br>(Stapleton et al., 2008).                                                                                                    |                                              | and cars respectively (Harrad et al., 2008)<br>1060 μg/kg dw (Sawal et al., 2008)<br>1.6-789 μg/kg dw (Stapleton et al., 2008)                                                                                       |                            |
|                                 | 353 µg/kg dw (Sawal et al., 2008)                                                                                                                                                                                                  |                                              | ······································                                                                                                                                                                               |                            |
| Dust e-waste                    | <2.50 to 139 µg/kg dw (Shi et al., 2009)                                                                                                                                                                                           | <2.50 to 139 µg/kg dw                        | 14.6 to 232 μg/kg (median 107 μg/kg)<br>dw (Shi et al., 2009).                                                                                                                                                       | 14.6–232 µg/kg dw          |
| Sewage sludge                   | 100 µg/kg dw (Kierkegaard et al., 2004)<br>266 to 1995 (median 1183) µg/kg dw (Shi et al.,<br>2009).                                                                                                                               | 266 to 1995 µg/kg dw                         | 0.31 to 1.66 µg/kg dw (Shi et al., 2009).                                                                                                                                                                            | 0.31–1.66 µg/kg dw         |
|                                 | - DBDPE range 57–220 µg/kg dw (mean 81 µg/kg<br>dw Europe, 31 µg/kg dw North America); ratio                                                                                                                                       |                                              |                                                                                                                                                                                                                      |                            |
|                                 | 2008a,b)<br>- DBDPE digested sludge 66–95 µg/kg dw                                                                                                                                                                                 |                                              |                                                                                                                                                                                                                      |                            |
|                                 | (mean 81 µg/kg dw),<br>BDE-209 digested sludge 650–1100 µg/kg dw<br>(mean 800 µg/kg dw) (Bieldund et al. 2008)                                                                                                                     |                                              |                                                                                                                                                                                                                      |                            |
| Sediment                        | (hier is a soo ig/kg dw) (Kierkegaard et al., 2003)<br>24 µg/kg dw (Kierkegaard et al., 2004)<br>38.8 to 364 µg/kg (mean 247) µg/kg dw<br>(Shi et al. 2009)                                                                        | 24–364 µg/kg dw                              | 0.05 to 2.07 µg/kg dw (Shi et al., 2009)<br>6.7 µg/kg dw (Qiu et al., 2007)                                                                                                                                          | 0.05-6.7 µg/kg dw          |
| Soil                            | 28.1 µg/kg dry wt (Shi et al., 2009).                                                                                                                                                                                              | 28.1 µg/kg dw                                | 0.05 µg/kg dw (Shi et al., 2009).                                                                                                                                                                                    | 0.05 μg/kg dw              |
| Birds                           | Muscle: 9.6–16.3 µg/kg dw (mean 12.7), Liver:<br>13.7–54.6 µg/kg dw (mean 34.4), Kidney: 24.5–<br>124 µg/kg dw (mean 64.5) (Shi et al., 2009)<br>ND to 1.7 µg/kg lw (Gao et al., 2009).<br>Range 4–800 µg/kg lw in various tissues | ND-800 µg/kg Iw                              | Muscle: 0.07–0.39 µg/kg dw (median 0.19), Liver:<br>0.27–2.41 µg/kg dw (median 1.23), Kidney: 0.12–<br>0.89 µg/kg dw (median 0.45) (Shi et al., 2009)                                                                | 0.07–2.41 μg/kg dw         |
|                                 | (Luo et al., 2009)                                                                                                                                                                                                                 |                                              |                                                                                                                                                                                                                      |                            |
| Fish<br>Bird egg                | < 0.03–3.7 µg/kg lw (K. Law et al., 2006)<br>1.3 to 288 µg/kg ww (Gauthier et al., 2007)                                                                                                                                           | <0.03 to 3.7 μg/kg lw<br>1.3 to 288 μg/kg ww | 0.11 µg/kg (Karlsson et al., 2006a,b)                                                                                                                                                                                | 0.11–0.96 µg/kg            |
| Tree bark                       | ND to 0.73 µg/kg dw (Qiu and Hites, 2008; Zhu and Hites, 2006)                                                                                                                                                                     | ND to 0.73 $\mu\text{g/kg}~dw$               | o.50 µg/kg IW III egg yolk (Verreault et al., 2007)                                                                                                                                                                  |                            |
| Panda tissue<br>Childrens' toys | ND to 863 µg/kg lw (Hu et al., 2008).<br>5540 µg/kg (Chen et al., 2009)                                                                                                                                                            | ND to 863 µg/kg lw<br>5540 µg/kg             | 101 µg/kg (Chen et al., 2009)                                                                                                                                                                                        | 101 µg/kg                  |

Environmental Studies

Covaci et al, (2011) Environ. Internat. 37, 532–556

# Levels in the environment (II)

- PBB and TBPH
- TBPH and TBB sewage sludge of WWTP San Francisco, US (*Klosterhaus et al. 2008*)
  - TBB: 40 to 1412 ng/g dw
  - TBPH: 57 to 515 ng/g dw
  - In the same ranges or higher than HBCD and decaBDE
- In finless porpoises from Hong Kong and China (*Lam et al. 2009*)
  - TBB: <0.4 -70 ng/g lw
  - TBPH: <0.04-3859 ng/g lw
- In house dust form Boston, US (Stapleton et al. 2008)
  - TBB: <6.6 to 15,030 ng/g (median 133 ng/g)
  - TBPH:1.5 to 10,630 ng/g (median 142 ng/g)

#### Conclusions

- GC-ECNI-MS sensitive method to measure BDBPE, DBDPE, TBB and TBPH
- The 'new' BFRs can be analyzed in the same run as PBDEs
- GC column < 15 meter (degradation of DBDPE)
- Use of non-destructive cleanup methods is needed (no acids)
- Combine cleanup with PBDEs
- LC-MS/MS in APPI/APCI mode good alternative
- Detected in the environment (limited data)

#### More "new" BFRs

 Determination of new brominated flame retardants and PBDEs in sediment and SPM from the Western Scheldt (Lopez et al. 2011)

| Molecular structure Compound |                                                                                                                                                                                                                | Molecular structure                          | Compound                                                                                                                                          |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Br Cl<br>Br Br<br>Br Br      | Pentabromochlorocyclohexane<br>PBCCH (isomers A, B, C and D)<br>CAS [87-84-3]<br><sup>a</sup> MW = 513.09<br><sup>b</sup> S <sub>water</sub> =0.055 mg/L<br><sup>c</sup> Log P <sub>octanol-water</sub> = 4.72 | H <sub>3</sub> C Br CH <sub>3</sub><br>Br Br | 2,3,4,5,6-Tetrabromo- <i>p</i> -xylene<br><i>p</i> TBX<br>CAS [23488-38-2]<br>MW = 421.75                                                         |
| Br Br Cl                     | Tetrabromo- <i>o</i> -chlorotoluene<br>TBoCT<br>CAS[39569-21-6]<br>MW = 422.19                                                                                                                                 | Br Br CH <sub>3</sub><br>Br Br               | 2,3,4,5,6-Pentrabromotoluene<br>PBT<br>CAS [87-83-2]<br>MW = 486.62<br>S <sub>water</sub> =0.000935 mg/L<br>Log P <sub>octanol-water</sub> = 6.99 |
| Br O<br>Br O<br>Br O<br>Br O | Tetrabromophthalic anhydride<br>TBPhA<br>CAS [632-79-1]<br>MW = 463.7<br>S <sub>water</sub> =0.016 mg/L<br>Log P <sub>octanol-water</sub> = 5.63                                                               | Br O Br Br Br Br                             | Tris(2,3-dibromopropyl)phosphate<br>TDBPP<br>CAS [126-72-7]<br>MW = 697.64<br>S <sub>water</sub> =8 mg/L<br>Log P <sub>octanol-water</sub> = 4.29 |
| Br Br Br Br Br               | 1,2-bis(2,4,6-tribromphenoxy)ethane<br>BTBPE<br>CAS [37853-59-1]<br>MW = 687.64<br>$S_{water} = 0.2 mg/L$<br>Log P <sub>octanol-water</sub> = 9.15                                                             | Br Br Br Br                                  | Decabromodipheylethane<br>DBDPE<br>CAS [84852-53-9]<br>MW = 971.2<br>S <sub>water</sub> =0.00072 mg/L<br>Log P <sub>octanol-water</sub> = 11      |

IVM Institute for Environmental Studies

### **Cleanup method**

- Quantification was conducted by IS.
   <sup>13</sup>C BDE209 was used for octa-, nona,and decaBDE and DBDPE. BDE58 and
   <sup>13</sup>C BDBPE was used for the other BFRs
- PBCCH, TBoCT, pTBX, PBT, TBPhA, TBDPP and BTBPE were analysed together with the PBDEs on a 50 m column
- DBDPE was analysed in the same run as octa-, nona-BDEs and BDE209 on a short column to avoid on-column degradation





# Concentrations in sediment (ng/g dw)



Upstream Scheldt estuary



#### **Results and Conclusions**

- Analytical procedure to determine PBCCH, TBoCT, pTBX, TBPhA, PBT, BDBPE, and DBDPE together with PBDEs in sediments and in suspended particulate matter
- First identification of PBCCH, pTBX and TBoCT in sediment and SPM
- The concentrations of these new flame retardants ranged from 0.05 to 0.30  $\mu$ g/kg dry weight

# Organophosphorus Flame Retardants (PFRs)



#### Introduction

- Phase-out production and use of PBDEs
- Increased use of alternative FRs (e.g. PFRs)
- Worldwide production volume of FRs
  - 14% PFRs compared to 21% for BFRs\*
- Detected in various matrices e.g. water, air sediment
- Limited information on PFRs in biota







22



 Determination of PFRs in the pelagic and benthic food web of the Western Scheldt



IVM Institute for Environmental Studies **PFRs** 



TiBP



TBP



TCEP



ТСРР









TDCPP

TBEP

TPP

EHDP



TCP



DBPhP





# Cleanup



IVM Institute for Environmental Studies

# PFRs in Belgian home dust (n=33) µg/g

|                          | House dust          | House dust samples $(n=33)$ |        |                  |              |  |  |
|--------------------------|---------------------|-----------------------------|--------|------------------|--------------|--|--|
| FRs                      | DF (%) <sup>a</sup> | Mean                        | Median | P95 <sup>b</sup> | Range        |  |  |
| OPFRs                    |                     |                             |        |                  |              |  |  |
| TEP                      | 0                   | < 0.05                      | < 0.05 |                  |              |  |  |
| TiBP                     | 100                 | 4.20                        | 2.99   | 8.81             | 0.70-15.6    |  |  |
| TnBP                     | 100                 | 0.25                        | 0.13   | 0.63             | 0.03-2.70    |  |  |
| TCEP                     | 86                  | 0.49                        | 0.23   | 1.72             | <0.08-2.65   |  |  |
| TCPP                     | 100                 | 4.82                        | 1.38   | 14.5             | 0.19-73.7    |  |  |
| TBEP                     | 100                 | 6.58                        | 2.03   | 23.1             | 0.36-67.6    |  |  |
| TPP                      | 100                 | 2.02                        | 0.50   | 7.28             | 0.04-29.8    |  |  |
| TDCPP                    | 97                  | 0.57                        | 0.36   | 0.99             | < 0.08-6.64  |  |  |
| TCP                      | 97                  | 0.44                        | 0.24   | 1.10             | <0.04-5.07   |  |  |
| $\sum OPFRs$             |                     | 19.4                        | 13.1   | 70.3             | 1.92-94.7    |  |  |
| <b>BFRs</b> <sup>c</sup> |                     |                             |        |                  |              |  |  |
| BDE-209                  | 98                  | 0.59                        | 0.31   | 0.92             | < 0.001-5.30 |  |  |
| $\sum$ PBDEs             |                     | 0.70                        | 0.36   | 1.14             | 0.003-6.33   |  |  |
| $\sum$ HBCDs             |                     | 1.74                        | 0.13   | 2.46             | 0.010-42.70  |  |  |
| TBBPA                    | 85                  | 0.04                        | 0.01   | 0.09             | 0.002-0.42   |  |  |

Van den eede et al, (2011) Environment International 37 454-461





#### Life Cycle and Risk Assessment of Environmental Compatible Flame Retardants Prototypical case study ENFIRO

EU research project FP7: 226563





# **Objectives ENFIRO**

- To study the substitution options for some BFRs
- ENFIRO delivers:
  - Comprehensive dataset on the viability of production, application
  - Risk assessment
  - Life cycle assessment (LCA)

# Work plan



#### ENFIRO: HFFRs for screening study

Inorganic FRs (n=7)







Intumescent systems (n=2)

Nanoclay (n=1)

# Three level assessments



IVM Institute for Environmental Studies

#### Assessment of FR/polymer material





#### AIPi leaching from PBT pellets and moulded plates





#### **Final conclusion**

VM Institute for

**Environmental Studies** 

- New BFRs can be analysed by LC versus GC  $\rightarrow$  Both
- Alternative flame retardant → only brominated or include PFRs
- What if we only use metal based FRs like ATH → problem solved?



# Acknowledgement

#### ENFIRO funded by the EU (226563)

