JRC NORMAN workshop

River Basin Specific Pollutants Selection and Monitoring

Availability of ecotoxicological data

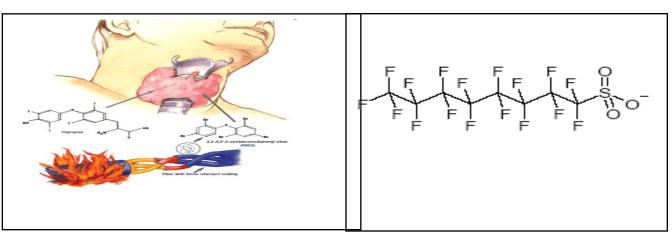
Willie Peijnenburg RIVM - National Institute for Public Health and the Environment

> 10 – 11 June 2010 Stresa, Italy

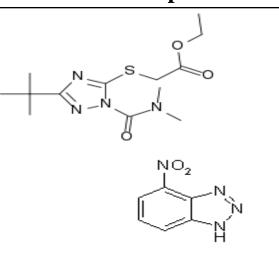
JRC NORMAN workshop River Basin Specific Pollutants

Selection and Monitoring

SOME GENERAL OBSERVATIONS


- 1 Various databases available
- 2 Screening of data/quality control?
- 3 Database up to data $\leftarrow \rightarrow$ one-time project?
- 4 Inclusion of toxicity modifying factors: pH/DOC/...?
- 5 Inclusion of fate properties?
- 6 Specific compound classes $\leftarrow \rightarrow$ wide arrays of compounds?
- 7 Solely experimental values \leftrightarrow supplemented with estimates?

JRC NORMAN workshop River Basin Specific Pollutants Selection and Monitoring


EXAMPLE

PBDE: "The PCB's of the future" Perfluorinated compounds

Product category	Tons produced	
Bath additives	162,300	
Shampoos, hair tonic	103,900	
Skin care products	75,500	
Hair sprays, setting lotions, hair dyes	71,000	
Oral hygiene products	69,300	
Soaps	62,600	
Sun screens	7,900	
Perfumes, aftershaves	6,600	
Total	559,100	

Fragrances / musks

JRC NORMAN workshop

River Basin Specific Pollutants Selection and Monitoring

SIDS endpoints

Physicochemical Properties:

Melting and boiling point, Vapour pressure, Kow, Koc* and S

Environmental Fate:

Biodegradation, Hydrolysis, Photolysis, Atmospheric oxidation and Bioaccumulation

Ecological Effects:

Aquatic toxicity: acute and long-term for fish, daphnia, algae Sediment toxicity: acute and long-term Terrestrial effects: acute and long-term

JRC NORMAN workshop

River Basin Specific Pollutants Selection and Monitoring

Brominated flame retardants, including BDEs (721 structures) Physical Chemical Properties: 1180 records Environmental fate parameters: 82 records Aquatic and terrestrial ecological effects parameters: 73 records Other effect data: 959 records Total: 2139 records

Perfluoroalkylated substances (PFC) (1064 structures) Physical Chemical Properties: 975 records Environmental fate parameters: 86 records Aquatic and terrestrial ecological effects parameters: 42 records Other effect data: 556 records Total: 1617 records

Endpoint	Units	# exp. data	
	[mg/L]	21	
Algae EC ₅₀		'	
Daphnia magna EC ₅₀ /NOEC	[mg/L]	8	
Freshwater snails (<i>Physa acuta</i>) LC ₅₀	[mg/L]	2	
Freshwater planarians (<i>Dugesia japonica</i>) LC ₅₀	[mg/L]	2	
Green neon shrimps (<i>Neocaridina denticulate</i>) LC ₅₀	[mg/L]	2	
Midge (Chironomus tentans) EC ₅₀	[mg/L]	1	
Vibrio fischeri EC ₅₀	[µM]	5	
Fish (Rainbow Trout) LC ₅₀	[mg/L]	3	
Fish (Tilapia) EC ₅₀ /LC ₅₀	[mg/L]	4	
Fish (Bluegill sunfish) LC ₅₀	[mg/L]	1	
Fish (fathead minnow) LC ₅₀	[mg/L]	1	
freshwater African clawed frog EC ₅₀ /LC ₅₀	[mg/L]	1	
Aquatic macrophytes EC ₅₀ /IC ₅₀	[mg/L]	5	
Plant EC ₅₀ /IC ₅₀	[mg/L]	6	
Rat inhalation LC ₅₀	ppm	50	
Mouse inhalation LC ₅₀	mg/m ³	39	
Guinea pig inhalation LC ₅₀	ppm	3	
Monkey inhalation LC ₅₀	ppm	3	
dog inhalation LC ₅₀	ppm	3	Innar

National Institute for Public Health and the Environment