

3rd NORMAN workshop

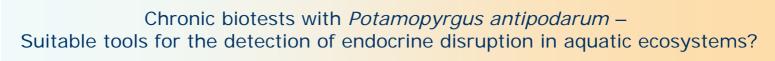
New tools for bio-monitoring of emerging pollutants

Organised by
FP6 project NORMAN
IVM - Institute for Environmental Studies
VU University, Amsterdam
The Netherlands

Scientific program

29 to 30 October 2007

VU University Conference room: Atrium Amsterdam, The Netherlands


Claudia Schmitt, Martina Duft, Lieven Bervoets, Eric De Deckere and Patrick Meire

Ecosystem Management Research Group University of Antwerp http://www.ua.ac.be/ecobe

endocrine systems at several levels and low

DDT

> chemicals causing specific effects on

Endocrine disruptors (EDs)

Background

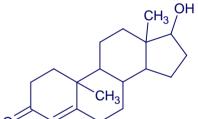
Test Organism

Spiked water

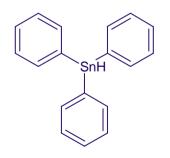
Spiked sediment

Field sediments

Field sediment extractions

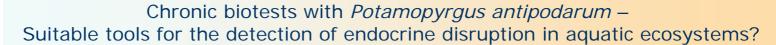

In situ cages

Conclusions


HO

Bisphenol-A

Testosterone



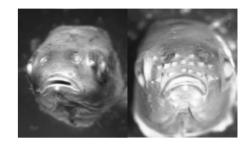
TributyItin

Effects of endocrine disruptors

Background

Test Organism

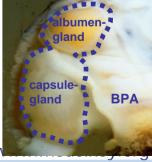
Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages


- > androgenic
 - ✓ masculinisation of females
 - ✓ abnormal decrease in reproduction
 - √ imposex
- > estrogenic
 - √ feminisation of males
 - abnormal increase in reproduction
 - √"superfemales"

Bac	kar	ou	nd
Duc	Kg i	Ou	HG

Test Organism

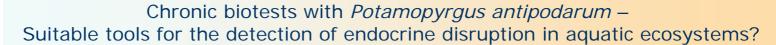
Spiked water

Spiked sediment

Field sediments

Field sediment extractions

In situ cages


Conclusions

	Potamopyrgus antipodarum	Marisa cornuarietis	Nassarius reticulatus
culturing	to be initiated by specimens (e.g. from Belgium)	to be initiated by specimens e.g. from Florida	not possible, sampling e.g. at the Atlantic Coast
sexes	females only, parthenogenic	both sexes	both sexes
suitability for habitats	freshwater and estuarine	freshwater only	marine and freshwater
exposure	water and sediment	water	water and sediment
test duration	1-2 months	3-6 months	1-3 months
endpoints	mortality, embryo production and development	mortality, VDSI (imposex), egg production	mortality, VDSI (imposex), gland weight
handling of analysis	easy determination	advanced skills required for imposex	advanced skills required
sensitivity to EDCs	estrogens (and androgens)	estrogens and androgens	androgens (and estrogens)

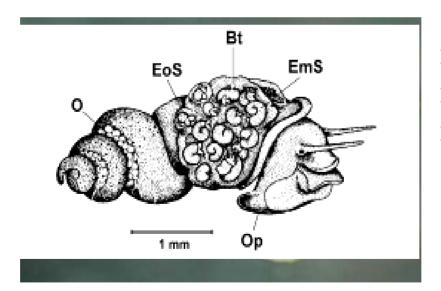
Background

Test Organism

Spiked water

Spiked sediment

Field sediments


Field sediment extractions

In situ cages

Conclusions

Potamopyrgus antipodarum

- > invasive species, originally from New Zealand
- > shell size up to 4.5 mm
- benthic and epibenthic
- tolerant for high salinities and variations in oxygen concentrations and pH

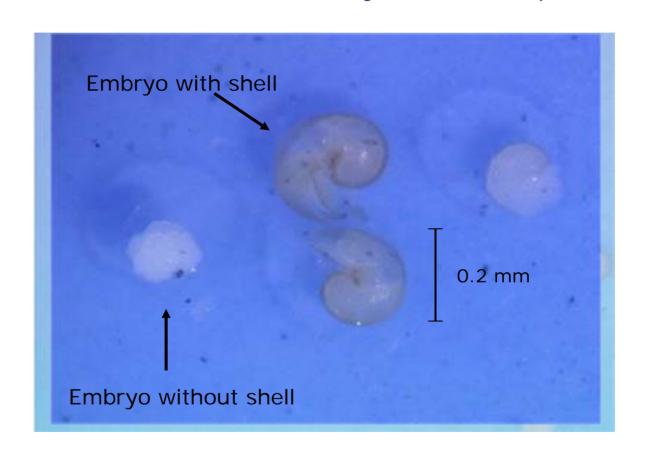
- ovoviviparious
- parthenogenic
- sensitive to endocrine active substances

Shefteantipordarshoolledentemposablofthantipollarum

Background

Test Organism

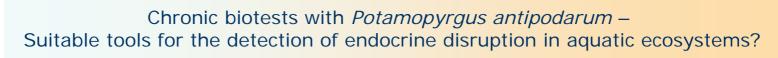
Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages


Conclusions

Test Setup

Background

Test Organism

Spiked water

Spiked sediment

Field sediments

Field sediment extractions

In situ cages

- $> 16 \pm 1^{\circ}C$
- > 16:8 h light/dark
- > 10 snails per replicate
- > 2-3 replicates
- control / solvent control
- reproduction, growth and embryo development as endpoints
- analysis after 14,28 (& 56 days)

Background

Test Organism

Spiked water

Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

SOP FOR TESTING OF CHEMICALS

Also: PROPOSAL FOR A NEW GUIDELINE Reproduction Test with the Prosobranch Snail *Potamopyrgus* antipodarum for Testing Endocrine Active Chemicals

Content of SOP:

Part I: Culturing of Potamopyrgus antipodarum
Part II: Reproduction Test using Water Exposure
Part III: Reproduction Test using spiked Sediment

Version: 2006-02-08

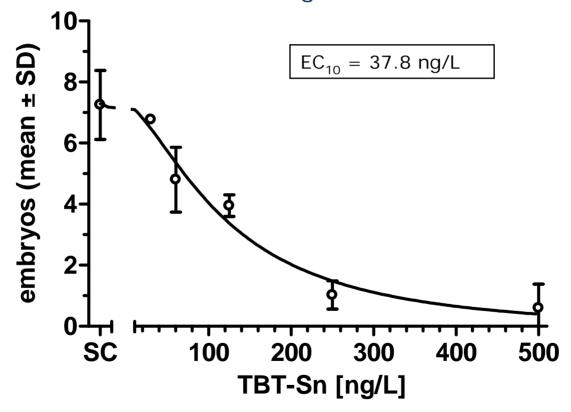
Claudia Schmitt, Martina Duft, Cornelius Brandelik, Ulrike Schulte-Oehlmann & Jörg Oehlmann Johann Wolfgang Goethe University Frankfurt am Main Department of Aquatic Ecotoxicology Siesmayerstr. 70, D-60054 Frankfurt, Germany www.bio.uni-frankfurt.de/ee/ecotox

Background

Test Organism

Spiked water

Spiked sediment


Field sediments

Field sediment extractions

In situ cages

Conclusions

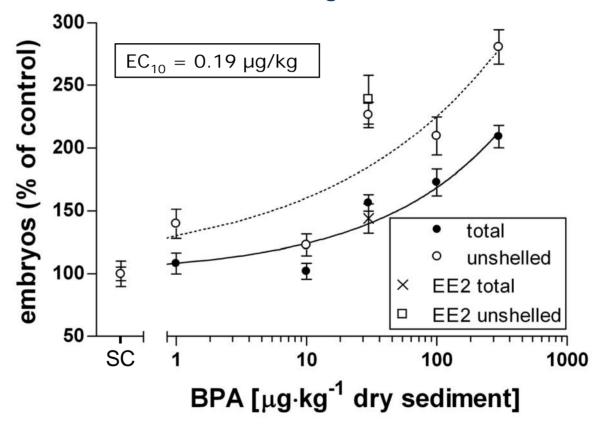
Effects of Tributyltin on unshelled embryo numbers of P. antipodarum after 4 weeks of exposure. n=20; Regression line is added.

Background

Test Organism

Spiked water

Spiked sediment


Field sediments

Field sediment extractions

In situ cages

Conclusions

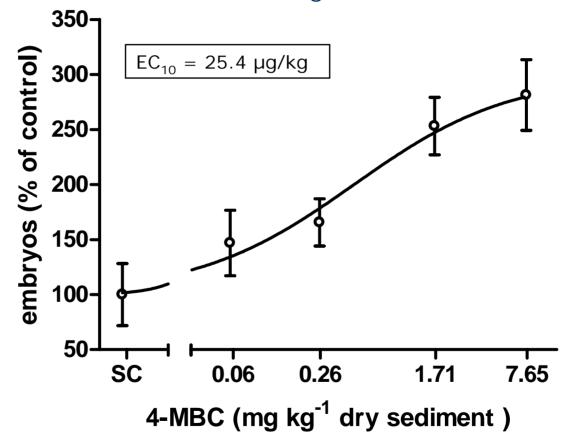
Effects of Bisphenol A and EE_2 on embryo numbers (\pm SEM) of *P. antipodarum* (without shell and total) after 4 weeks of exposure. n=20; Regression lines are added. (Data from Duft et al., 2003)

Background

Test Organism

Spiked water

Spiked sediment


Field sediments

Field sediment extractions

In situ cages

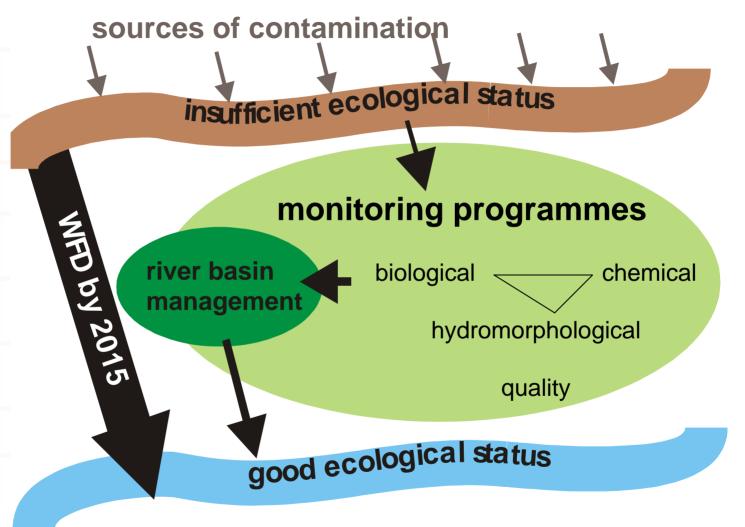
Conclusions

Effects of 4-Methylbenylidencamphor (4-MBC) on mean numbers (\pm SD) of unshelled *P. antipodarum* embryos after 8 weeks of exposure. n=20; Regression line is added. (Data from Schmitt et al., 2007)

Background

Test Organism

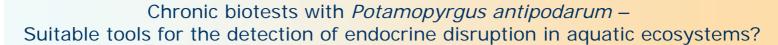
Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages


Conclusions

Background

Test Organism

Spiked water

Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

sampling sites

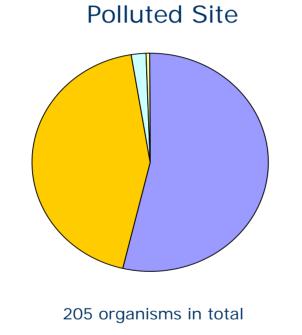
- were identified based on monitoring data
- > sediments from three different river basins
 - √ Elbe/Bilina (Czech Republic)
 - ✓ Scheldt/Schijn (Belgium, The Netherlands)
 - ✓ Llobregat/Anoia (Spain)
- both reference and polluted site for each river
- > sampled at the same time (summer 2006)
- > stored dark and cool

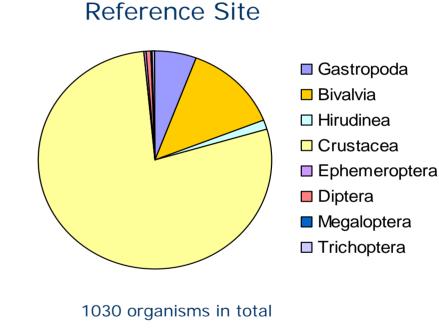
Macro invertebrate community at the Schijn (Belgium)

Background

Test Organism

Spiked water


Spiked sediment


Field sediments

Field sediment extractions

In situ cages

Conclusions

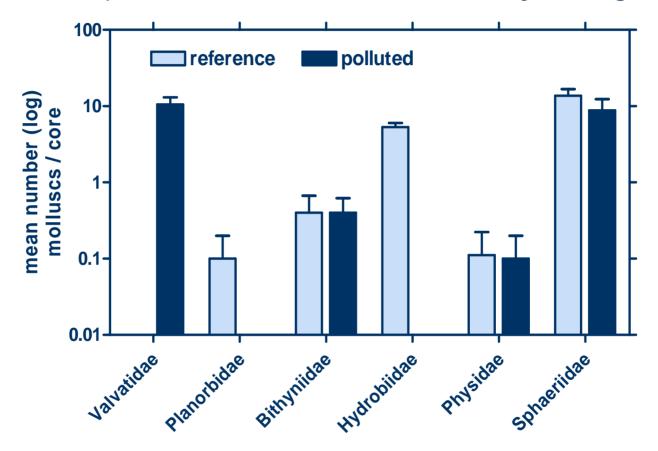
(Oligocheata and Chironomidae are not yet included)

Composition of molluscs at the Schijn (Belgium)

Background

Test Organism

Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

Mean numbers (log) of molluscs found per sediment core in the river Schiijn at reference site (Run) and polluted site (Een) in summer 2006

Test Organism

Spiked water

Spiked sediment

Field sediments

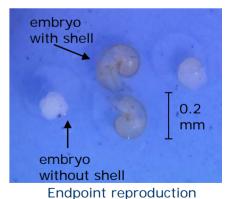
Field sediment extractions

In situ cages

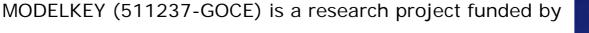
4 mm

Endpoint growth

Field sediments from three different river basins



Laboratory culture of Potamopyrgus antipodarum



Sediment contact test

Background

Test Organism

Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

Mean (\pm SEM); C=artificial sediment control; n=20; \star significant differences to control; + to corresponding reference site; + p < 0.05, $\star\star\star$ /+++ p < 0.001; Mann-Whitney U-test)

possible explanations

Background

Test Organism

Spiked water

Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

- > effects of estrogenic substances at sites where embryo number increased
 - ✓ 50 ng/l BPA* in water samples of the river Bilina
 - √ 27 428 ng/g Nonylphenol* in sediment samples of the river Elbe and tributaries
- > effects of different sediment characteristics
 - ✓ variances in TOC and grain size distribution are expected
 - ✓ reproduction of P. antipodarum is not influenced by variances in TOC content between 1.2 and 9%#

^{*}Stachel et al., 2003

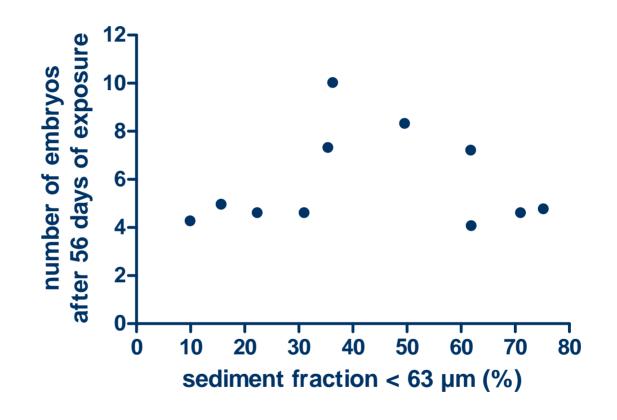
[#]Duft et al., 2003

reproduction vs grain size

Background

Test Organism

Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

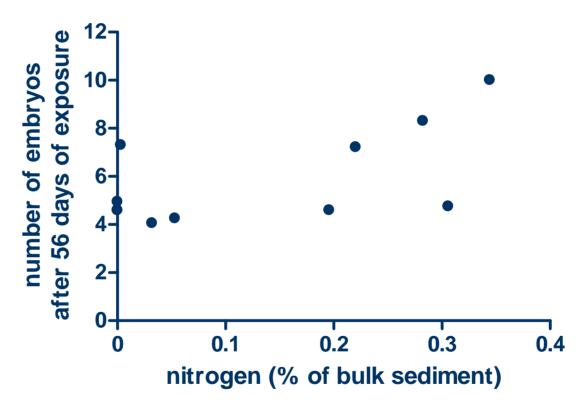
Correlation of the mean number of P. antipodarum embryos and the sediment fraction < 63 μ m. Pearson correlation, $r^2 = 0.57$, p = 0.007

Background

Test Organism

Spiked water

Spiked sediment


Field sediments

Field sediment extractions

In situ cages

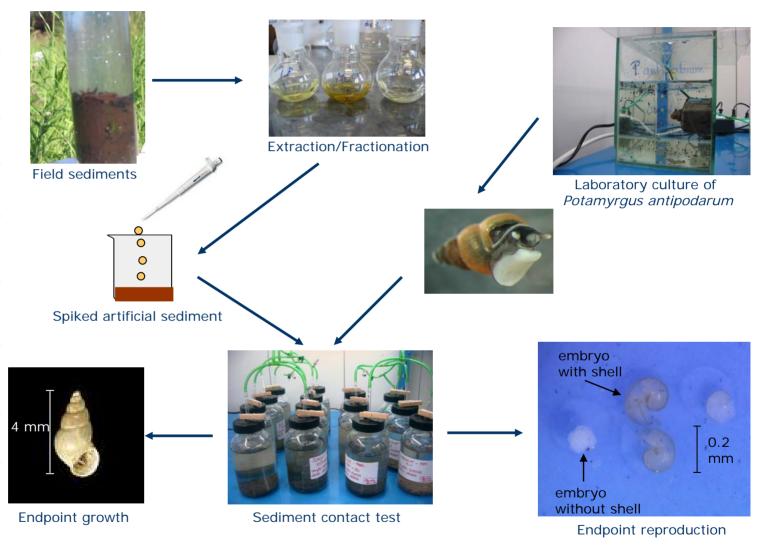
Conclusions

reproduction vs nitrogen content

Correlation of the mean number of P. antipodarum embryos and the nitrogen content in bulk sediment. Pearson correlation, $r^2 = 0.36$, p = 0.05

Background

Test Organism


Spiked water

Spiked sediment

Field sediments

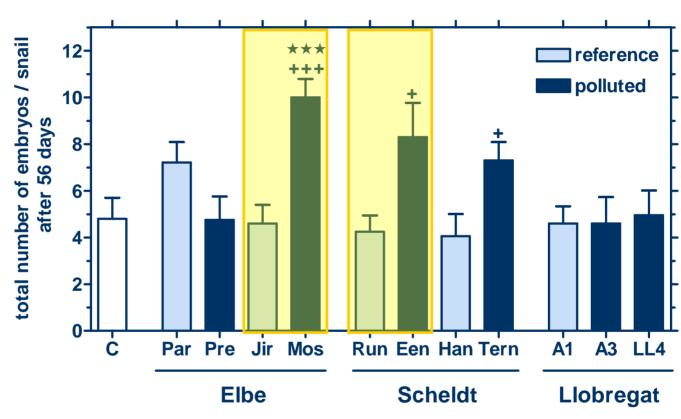
Field sediment extractions

In situ cages

Background

Test Organism

Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages

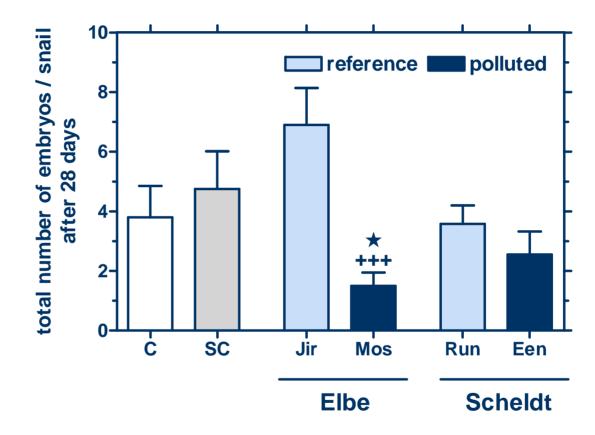
Conclusions

Mean (\pm SEM); C=artificial sediment control; n=20; \star significant differences to control; + to corresponding reference site; + p < 0.05, $\star\star\star$ /+++ p < 0.001; Mann-Whitney U-test)

Background

Test Organism

Spiked water


Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

Mean number (\pm SEM); n=20; C=control, SC=solvent control with dichlormethane; \star significant differences to solvent control; + significant differences to corresponding reference site; \star p < 0.05, +++ p < 0.001; Mann-Whitney U-test)

Effect Directed Analysis

Background

Test Organism

Spiked water

Spiked sediment

Field sediments

Field sediment extractions

In situ cages

- identifying certain groups of compounds which could be responsible for the observed effects
 - ✓ fractionation of the field sediment extracts into 4 different fractions according to their chemical characteristics
 - spiking the artificial sediments with solutions of each field sediment fraction

In situ biotests

Background

Test Organism

Spiked water

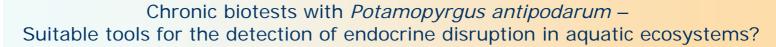
Spiked sediment


Field sediments

Field sediment extractions

In situ cages

- exposure via the water phase and biofilm
- pre-exposure of the cages for 14 days to enable sufficient growth of biofilm
- exposure of 20 snails per cage for 28 days
- mortality, growth and reproduction as endpoints



http://www.modelkey.org

Conclusions

Background

Test Organism

Spiked water

Spiked sediment

Field sediments

Field sediment extractions

In situ cages

Conclusions

- ➤ the reproduction of *Potamopyrgus antipodarum* is an appropriate endpoint for measuring effects of endocrine active chemicals in the laboratory
- ➤ the biotests with *P. antipodarum* can be used in various different ways regarding different ways of exposure
- ➤ P. antipodarum is a promising test organism for the assessment of endocrine disruption in field sediments

Acknowledgements

- Veterinary Research Institute Brno, Czech Republic
- University of Joensuu, Finland
- Johann Wolfgang Goethe University
 Frankfurt am Main, Germany
- European Union

